قضایای نقطه ثابت برای نگاشتهای مرکز دار

پایان نامه
چکیده

در این مقاله به اثبات قضایای نقطه ثابت برای دسته جدیدی از نگاشتهای غیر خطی موسوم به نگاشتهای مرکزدار پرداخته ایم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

قضایای نقطه ثابت، برای نگاشتهای انقباضی تعمیم یافته

در این پایان نامه نخست قضیه نقطه ثابت نادلر را به چندین صورت گسترش می دهیم. سپس مفهوم ?- فاصله را بیان کرده و به معرفی خاصیت های آن می پردازیم و گسترشی از قضیه نادلر را که وابسته به مفهوم ?- فاصله است را بیان می کنیم. در آخر، مفهومی به نام q- تابع، روی یک فضای شبه متریک را معرفی کرده و بعد از چند مثال در رابطه با این مفهوم، قضیه نادلر را در فضاهای شبه متریک همراه با یک q- تابع، گسترش می دهیم.

15 صفحه اول

قضایای نقطه ثابت نگاشتهای غیرخطی در فضای هیلبرت

در این پایان نامه نگاشت های ناگسترشی مجانبی؛ t_j و شبه ناگسترشی k - اکیدا را معرفی می کنیم و ثابت می کنیم اگر c یک زیرمجموعه ناتهی ? محدب و بسته ار فضای هیلبرت h باشد؛ آنگاه نگاشت ناگسترشی مجانبی (t_j)مجانبی t: c--c؛ دارای یک نقطه تابث است اگر و تنها اگر به ازای x متعلق به x کراندار باشد و در آخر همگرایی ضعیف و قوی نگاشت های شبه ناگسترشی k - اکید را مورد بحث قرار می دهیم. سپس با استفاده از مفهو...

قضایای نقطه ثابت لیمز برای نگاشتهای مجموعه مقدار در فضای cat(o)

در ابتدا فضای در ختان متری را مورد برسی قرار داده و قضایای نقطه ثابت را به اثبات رسانده و در نهایت در این پایان نامه روی فضاهای cat(o) کرده که در واقع فضای درختان متری زیر مجموعه ای از این فضا می باشند. در این فضا ثابت می کنیم اگر e یک زیر مجموعه محدب بسته کراندار از فضای cat(o) در نگاشت مجموعه مقدار باشد که در شرایط درونی ضعیف صدق کند دارای نثطه ثابت می باشد

قضایای نقطه ثابت برای توابع مجموعه مقدار

‏هدف اصلی این رساله بیان و اثبات تعمیم هایی از قضیه نقطه ثابت باناخ برای توابع و توابع مجموعه مقدار است. کاربرد هایی از این قضایا در اثبات وجود و منحصر به فردی جواب معادلات دیفرانسیل‏، معادلات انتگرال و معادلات ماتریسی آورده شده است. همچنین ‏نسخه ای از اصل انقباض باناخ در مجموعه های متعامد ثابت شده است.

15 صفحه اول

قضایای نقطه ثابت برای مجموع دو عملگر

در این جا یک عملگر انبساطی و دیگری انقباضی میباشد و کاربرد ها هم مورد بررسی قرار میگیرند

15 صفحه اول

قضایای نقطه ثابت روی فضاهای خطی نرم دار فازی

در این پایان نامه ارتباط بین –?نرمها و نرم فازی، خواص ??همگرایی و ??کشی، تعاریف کرانداری -lفازی و بسته –lفازی را در فضاهای نرم دار فازی معرفی می کنیم. در آخر مفاهیم ساختار نرمال فازی، نگاشت توسعه نیافته فازی و قضیه نقطه ثابت برای نگاشتهای توسعه نیافته فازی بیان

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023